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Abstract—In this work, we present a two-tier air-cooled ther-
mal testbed composed of an NVIDIA Tesla K40 GPU and a
heater/thermometer top die. The top die has four independently-
controllable heaters, which can emulate a wide range of com-
ponents, ranging from low power memory to high-performance
multi-core processor cores. The performance and temperature of
the bottom-tier GPU on several deep neural network workloads is
investigated as a function of increasing top-die power dissipation,
and the implications for 3DIC cooling are discussed.

Index Terms—Three-dimensional integrated circuits, deep neu-
ral networks, thermal management of electronics, thermal resis-
tance.

I. INTRODUCTION

Three dimensional integrated circuits (3DICs) are becoming
an increasingly attractive option for system interconnection
due to their potential to unlock ultra-high bandwidth [1]-[3].
Applications which require high bandwidth, such as machine
learning [4], stand to benefit significantly from the heteroge-
neous 3D integration of high performance computing elements
coupled with large quantities of memory. Thermal constraints
complicate the design of such 3D systems, however, as the
areal power density of a 3DIC can be much higher than
the power density of the equivalent 2D system, making heat
removal and thermal coupling significant challenges in 3D
systems [5]-[7]. In order to begin to quantify the impact of
thermal coupling on the performance of functional systems,
we have developed a two-tier air-cooled 3D thermal testbed,
shown in Fig. 1, composed of an NVIDIA Tesla K40 GPU
[8] and a top die with resistive heaters, which can emulate a
variety of different workloads.

II. DESIGN AND ASSEMBLY

The heater die (shown in Fig. 2) is composed of four serpen-
tine platinum traces, each connected to two gold pads. Each
quadrant of the die can be controlled and sensed separately,
enabling the use of nonuniform power maps. The heater coils
were fabricated via a lift-off process and are composed of a
0.2um-thick layer of platinum. The heater die was mounted
back-to-back (B2B) with the GPU die. Since the heater die was
stacked face up, the heater coils were covered with a layer of
Kapton tape to electrically isolate them from the copper heat
spreader, which slightly increased the thermal resistance of the
stack. While a face-to-back (F2B) configuration would better
reflect a typical 3D stacking scenario, the lack of clearance
between the thermal die and the K40 board necessitated the
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Fig. 1. Schematic of the air-cooled 3DIC thermal testbed.

Fig. 2. Heater/thermometer die used to emulate a second tier logic or memory
device. Each quadrant can be independently controlled.

B2B stacking approach. The heat spreader and heat sink
were removed from the board, and the copper portion of
the heat sink was milled down by approximately 0.5mm to
accommodate the heater die, and an additional 0.5mm near the
edges to accommodate the control/signal wires for the heaters,
as can be seen in Figs. 3 to 5. Additionally, a portion of the
aluminum board chassis was thinned down to allow the heater
wires to exit the region immediately surrounding the GPU.
To improve the thermal contact between the GPU, the
heater, and the copper heat spreader, we used a thin layer
of Arctic Silver 5 thermal interface material (TIM) at each
interface. The resistance of each heater was measured over
a range of temperatures in a Baxter Scientific Products DP-
22 oven. As can be seen in Fig. 6, the heaters show a
linear relationship between resistance and temperature. During
operation, the heaters are driven at a constant power, and their
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Fig. 3. NVIDIA Tesla K40 heat spreader with edges milled to accomodate
heater/thermometer wires, and with thermal interface material applied to
ensure efficient heat transfer.
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Fig. 4.  Profile view of the modified heat spreader with top-tier
heater/thermometer die attached. A small portion of the copper heat spreader
was milled down to make room for the heater wires.

resistances are inferred from the driving voltages and currents.
In order to validate the use of B2B stacking in the testbed, we
simulated the thermal performance of a two-tier 3D stack, with
a power density of 100W/cm? dissipated on the bottom tier,
and 10W/cm? dissipated on the top tier. As can be seen in
Fig. 7, the thermal difference between the two scenarios is
very small, since the thermal conductivity of silicon is high.
These results suggest that data from the B2B thermal testbed
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Fig. 5. NVIDIA Tesla K40 heat spreader with heater die attached. The heat
spreader sits within a cutout in the aluminum chassis (black).
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Fig. 6. Calibration measurements (circles) and best fits (lines) for the
heater/thermometer structures on the top-tier heater die.
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Fig. 7. Simulated thermal impact of face to back (F2B) vs. back to back
(B2B) bonding of a two-tier 3D stack. The B2B thermal response very closely
mirrors the F2B response, justifying the B2B approach used in the testbed.

can be used to make reasonable inferences about F2B systems.

III. RESULTS AND DISCUSSION

We evaluated the two-tier thermal testbed with four deep
neural networks (DNNs), detailed in Table I, which represent
the state-of-the-art in artificial intelligence, recognition, and
classification. Each DNN benchmark was run 25 times back
to back to allow the GPU time to reach a steady-state con-
dition under load, and the average GPU temperature, power
consumption, and computation time were recorded. After each
set of 25 runs, the system was kept idle for 5 minutes to allow
time for the GPU to return to a baseline temperature after
which the next benchmark was run 25 times back to back.
This process was repeated for each benchmark with top-die
power dissipations of OW, 16W, 24W, 30W, and 40W. Each
time the top die power dissipation was changed, the GPU was
kept idle for 5 minutes to reach a steady-state temperature.
After running the top die at 24W, the resistance of heaters 2
and 4 dropped to zero, due to a short caused by a small gap in
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Fig. 8. Measured temperature of the top-tier die with the GPU running various
machine learning workloads, and with the top die dissipating OW.

TABLE I
BENCHMARK OVERVIEW
Network Dataset Domain Model Size MACCs
LeNet MNIST Digit recognition 0.8 MB 2M
AlexNet  ImageNet Detect/classify 116.3 MB 736M
Overfeat  ImageNet Detect/classify 278.3 MB 2,797TM
VGG-16  ImageNet Detect/classify 339MB 16,361M

the electrical isolation. To approximately compensate for the
loss of heaters 2 and 4, heaters 1 and 3 were run at twice the
power density for the 30W and 40W runs. The resistance of
each heater on the top die was sampled every 3.3 seconds to
determine the dynamic top-die temperatures.

In Fig. 8, the temperature of each heater on the top die
is shown as a function of time for one complete test run
encompassing all four benchmarks, with the top-die power
dissipation set to OW. The beginning and end of each workload
are clearly visible as the die temperature rapidly increases to
a steady state under load, then decays to its idle steady state.
The variation in heater temperature is attributed to imperfect
contact between the heat spreader and the heater/GPU stack.

In Fig. 9, the average GPU temperature during each work-
load is shown as a function of top-die power dissipation.
As the top-die power dissipation increases, the average GPU
temperature measured during each workload tends to increase,
and the temperature during the AlexNet, Overfeat, and VGG-
16 workloads exceeds 85°C at a top-die power dissipation of
approximately 30W. The GPU remains relatively cool during
the LeNet workload, as it has a much smaller computational
footprint than the others, and does not fully stress the GPU. As
shown in Fig. 10, the time required for each workload remains
relatively flat until 30W, at which point the larger workloads
begin to overpower the heat sink, and the GPU begins limiting
its performance to avoid exceeding its thermal limits.

In Fig. 11, the average GPU power consumption is shown
for each workload as a function of top-die power dissipa-
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Fig. 9. Impact on GPU temperature as top-die power is increased.
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Fig. 10. Impact of heater power on GPU computation time. Each curve is
normalized to its value at a top-die power dissipation of OW.

tion. GPU power increases for each of the large workloads
(AlexNet, Overfeat, and VGG-16) up to a top-die power
dissipation of approximately 24W, due in part to increased
transistor leakage. Above 24W, the GPU power consumption
drops sharply for each of the large workloads. As can be seen
in Fig. 10, the GPU appears to limit its performance in order to
remain within its thermal envelope, as the average computation
time for each benchmark stays roughly constant until the
average GPU temperature approaches 90°C, at which point the
computation time dramatically increases. While the average
GPU power decreases at high top-die power dissipations, the
computation energy increases significantly, due to the increase
in computation time, as seen in Fig. 12.

The temperature measured at heater 1 on the top die for
each experimental condition is shown in Fig. 13. During the
30W and 40W tests the maximum temperature of heater 1
increases to 110°C. This high temperature can be attributed to
the poor thermal transfer between heater 1 and the heat sink,
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Fig. 11. Impact on GPU power dissipation as top-die power is increased.
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Fig. 12. Impact of heater power on GPU computation energy. Each curve is
normalized to its value at a top-die power dissipation of OW.

as shown in Fig. 8, and to the asymmetric power maps used
for the 30W and 40W tests, during which only heaters 1 and
3 were used due to the failure of heaters 2 and 4.

IV. CONCLUSIONS

GPU-accelerated deep neural networks could benefit greatly
from the high bandwidth and low latency enabled by 3D
integration, as DNNs require large sets of model parameters to
be fed to the cores of the GPU, but thermal limits could offset
the benefits of such integration. In order to explore the impact
of 3D stacking on DNN computational performance, we have
developed and characterized an air-cooled thermal testbed for
the investigation of the impact of thermal crosstalk and cooling
limits on the performance of high performance 3DICs. The
thermal testbed was used to emulate a two tier GPU-based
3D stack with a thermal die on the top tier to emulate stacked
memory or logic. The GPU operating temperature increased
steadily with top-die power dissipation, and once the average
GPU temperature approached 90°C (at 30W top-die power
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Fig. 13. Measured temperature of heater 1 during the benchmark suite, for
a range of top-tier power dissipations.

dissipation), the GPU appears to limit its performance to
avoid exceeding its thermal limits. In the worst case, we
observed a 2.6X increase in computation time, and a 2.2X
increase in computation energy, and we expect higher top-
tier power dissipations to yield worse performance/efficiency
degradation. These results suggest that aggressive cooling
techniques may have a significant impact on the viability of
high performance 3DICs, especially for DNN workloads.
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